
IJSRSET1623148 | Received : 02 June 2016 | Accepted : 08 June 2016 | May-June 2016 [(2)3: 525-529]

© 2016 IJSRSET | Volume 2 | Issue 3 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

525

An Improved FP-Tree Algorithm with Relationship Technique

for Refined Result of Association Rule Mining
Priyanka Saxena, Ruchi Jain

TITECH, JABALPUR, Madhy Pradesh, India

ABSTRACT

Construction and development of classifier that works with more accuracy and performs efficiently for large

database is one of the key tasks of data mining techniques. Secondly training dataset repeatedly produces massive

amount of rules. It’s very tough to store, retrieve, prune, and sort a huge number of rules proficiently before

applying to a classifier. In such situation FP is the best choice but problem with this approach is that it generates

redundant FP Tree. A Frequent pattern tree (FP-tree) is type of prefix tree that allows the detection of recurrent

(frequent) item set exclusive of the candidate item set generation. It is anticipated to recuperate the flaw of

existing mining methods. FP – Trees pursues the divide and conquers tactic. In this thesis we have adapt the same

idea for identifying frequent item set with large database. For this we have integrated a positive and negative rule

mining concept with frequent pattern algorithm and correlation approach is used to refine the association rule and

give a relevant association rules for our goal. Our method performs well and produces unique rules without

ambiguity.

Keywords: FP, Frequent Itemset, Positive Negative Rules.

I. INTRODUCTION

With the increase in Information Technology, the size of

the databases created by the organizations due to the

availability of low-cost storage and the evolution in the

data capturing Technologies is also increasing,. These

organization sectors include retail, petroleum,

telecommunications, utilities, manufacturing,

transportation, credit cards, insurance, banking and

many others, extracting the valuable data, it necessary to

explore the databases completely and efficiently.

Knowledge discovery in databases (KDD) helps to

identifying precious information in such huge databases.

This valuable information can help the decision maker to

make accurate future decisions. KDD applications

deliver measurable benefits, including reduced cost of

doing business, enhanced profitability, and improved

quality of service. Therefore Knowledge Discovery in

Databases has become one of the most active and

exciting research areas in the database community.

1.1. Data Mining

This is the important part of KDD. Data mining

generally involves four classes of task; classification,

clustering, regression, and association rule learning.

Data mining refers to discover knowledge in huge

amounts of data. It is a scientific discipline that is

concerned with analyzing observational data sets with

the objective of finding unsuspected relationships and

produces a summary of the data in novel ways that the

owner can understand and use. Data mining as a field of

study involves the merging of ideas from many domains

rather than a pure discipline the four main disciplines

[25], which are contributing to data mining include:

Statistics: it can provide tools for measuring significance

of the given data, estimating probabilities and many

other tasks (e. g. linear regression).

Machine learning: it provides algorithms for inducing

knowledge from given data(e. g. SVM).

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

526

Data management and databases: since data mining

deals with huge size of data, an efficient way of

accessing and maintaining data is necessary.

Artificial intelligence: it contributes to tasks involving

knowledge encoding or search techniques (e. g. neural

networks).

1.2. Data Mining Applications

Data mining has become an essential technology for

businesses and researchers in many fields, the number

and variety of applications has been growing gradually

for several years and it is predicted that it will carry on

to grow. A number of the business areas with an early

embracing of DM into their processes are banking,

insurance, retail and telecom. More lately it has been

implemented in pharmaceutics, health, government and

all sorts of e-businesses (Figure 1-1).

One describes a scheme to generate a whole set of

trading strategies that take into account application

constraints, for example timing, current position and

pricing [24]. The authors highlight the importance of

developing a suitable back testing environment that

enables the gathering of sufficient evidence to convince

the end users that the system can be used in practice.

They use an evolutionary computation approach that

favors trading models with higher stability, which is

essential for success in this application domain.

Apriori algorithm is used as a recommendation engine in

an E-commerce system. Based on each visitors purchase

history the system recommends related, potentially

interesting, and products. It is also used as basis for a

CRM system as it allows the company itself to follow-

up on customer’s purchases and to recommend other

products by e-mail [13].

A government application is proposed by [26]. The

problem is connected to the management of the risk

associated with social security clients in Australia. The

problem is confirmed as a sequence mining task. The

action ability of the model obtained is an essential

concern of the authors. They concentrate on the difficult

issue of performing an evaluation taking both technical

and business interestingness into account.

Figure 1. Data mining applications

(http://www. kdnuggets. com)

II. METHODS AND MATERIAL

Related Work

The first algorithm for mining all frequent itemsets and

strong association rules was the AIS algorithm by [3].

Shortly after that, the algorithm was improved and

renamed Apriori. Apriori algorithm is, the most classical

and important algorithm for mining frequent itemsets.

Apriori is used to find all frequent itemsets in a given

database DB.The key idea of Apriori algorithm is to

make multiple passes over the database.

Direct Hashing and Pruning (DHP) :

It is absorbed that reducing the candidate items from the

database is one of the important task for increasing the

efficiency. Thus a DHP technique was proposed [7] to

reduce the number of candidates in the early passes for

and thus the size of database. In this method, support is

counted by mapping the items from the candidate list

into the buckets which is divided according to support

known as Hash table structure. As the new itemset is

encountered if item exist earlier then increase the bucket

count else insert into new bucket. Thus in the end the

bucket whose support count is less the minimum support

is removed from the candidate set.

In this way it reduce the generation of candidate sets in

the earlier stages but as the level increase the size of

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

527

bucket also increase thus difficult to manage hash table

as well candidate set.

Partitioning Algorithm:

Partitioning algorithm [1] is based to find the frequent

elements on the basis partitioning of database in n parts.

It overcomes the memory problem for large database

which do not fit into main memory because small parts

of database easily fit into main memory. This algorithm

divides into two passes.

Sampling Algorithm:

This algorithm [10] is used to overcome the limitation of

I/O overhead by not considering the whole database for

checking the frequency. It is just based in the idea to

pick a random sample of itemset R from the database

instead of whole database D. The sample is picked in

such a way that whole sample is accommodated in the

main memory. In this way we try to find the frequent

elements for the sample only and there is chance to miss

the global frequent elements in that sample therefore

lower threshold support is used instead of actual

minimum support to find the frequent elements local to

sample. In the best case only one pass is needed to find

all frequent elements if all the elements included in

sample and if elements missed in sample then second

pass are needed to find the itemsets missed in first pass

or in sample [13].

Dynamic Itemset Counting (DIC):

This algorithm [4] also used to reduce the number of

database scan. It is based upon the downward disclosure

property in which adds the candidate itemsets at

different point of time during the scan. In this dynamic

blocks are formed from the database marked by start

points and unlike the previous techniques of Apriori it

dynamically changes the sets of candidates during the

database scan. Unlike the Apriori it cannot start the next

level scan at the end of first level scan, it start the scan

by starting label attached to each dynamic partition of

candidate sets.

III. RESULTS AND DISCUSSION

PROPOSED WORK AND RESULTS

Algorithm for FP-tree construction

Input: A transaction database DB and a minimum

support threshold ξ.

Output: FP-tree, the frequent-pattern tree of DB.

Method: The FP-tree is constructed as follows.

1. Scan the transaction database DB once. Collect F,

the set of frequent items, and the support of each

frequent item. Sort F in support-descending order as

FList, the list of frequent items.

2. Create the root of an FP-tree, T , and label it as

“null”. For each transaction Trans in DB do the

following.

Select the frequent items in Trans and sort them

according to the order of FList. Let the sorted frequent-

item list in Trans be [p | P], where p is the first element

and P is the remaining list. Call insert tree ([p | P], T).

The function insert tree([p | P], T) is performed as

follows. If T has a child N such that N.item-name =

p.item-name, then increment N’s count by 1; else create

a new node N, with its count initialized to 1, its parent

link linked to T , and its node-link linked to the nodes

with the same item-name via the node-link structure. If P

is nonempty, call insert tree (P, N) recursively.

Then, the next step is to generate positive and negative

class association rules. It firstly finds the rules contained

in F which satisfy min_sup and min_conf threshold.

Then, it will determined the rules whether belong to the

set of positve class correlation rules P_AR or the set of

negative class correlation rules N_AR.

The algorithm of generating positive and negative class

association rules is shown as follow:

Algorithm for generating positive and negative class

association rules

Input: training dataset T, min_sup, min_conf

Output: P_AR, N_AR

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

528

(I)P_AR=NULL, N_AR=NULL;

(2)for (any frequent itemset X in F and Ci in C)

{

if (sup(X→ci)>min_sup and conf(X→ ci)> min_conf)

if(corr(X, ci > 1)

{

P_AR= P_AR U {X→ - ci;};

}

else if corr(X, ci <I

{

N_AR= N_AR U {X→ - ci;};

}

(3) returnP_AR and N_AR;

In this algorithm, we use FP Growth method generates

the set of frequent itemsets F, In F, there are some

itemsets passing certain support and confidence

thresholds. And the correlation between itemsets and

class labels is used as an important criterion to judge

whether or not the correlation rule is positve. Lastly,

P_AR and N_AR are returned.

For the artificial dataset which contains the maximal

frequent itemset in large amount shows better result with

new approach as shown in figure 2 then FP-tree and

Apriori algorithm. In the artificial dataset there are

various transactions consider which occur repeatedly in

the database and some transactions occur greater

than the minimum support. The itemset remains for

mining frequent itemset are mined with the help of

second procedure whose complexity equals to the

FP-Growth algorithm but due to procedure 1 the

overall complexity reduce and become efficient.

Figure 2. Execution Time for Artificial dataset

As it is clear from figure 3, the memory consumption for

the Apriori algorithm is the highest at all level support

because it produces candidate itemsets. The memory

consumption for FP-tree at higher support levels is

approximately same as the new approach because as the

support increase the probability of finding the maximal

itemset whose repetition is greater than the minimum

support is less thus its working become same as the FP-

Growth algorithm.

Figure 3. The memory usage at various support levels

on dataset

IV. CONCLUSION

In this paper, we considered the following factors for

creating our new scheme, which are the time and the

memory consumption, these factors, are affected by the

approach for finding the frequent itemsets. Work has

been done to develop an algorithm which is an

improvement over Apriori and FP-tree with using an

approach of improved Apriori and FP-Tree algorithm for

a transactional database. According to our

observations, the performances of the algorithms are

strongly depends on the support levels and the

features of the data sets (the nature and the size of the

data sets). Therefore we employed it in our scheme to

guarantee the time saving and the memory in the case of

sparse and dense data sets. It is found that for a

transactional database where many transaction items are

repeated many times as a super set in that type of

database maximal Apriori (improvement over classical

Apriori) is best suited for mining frequent itemsets. The

itemsets which are not included in maximal super set is

treated by FP-tree for finding the remaining frequent

itemsets. Thus this algorithm produces frequent itemsets

completely. This approach doesn’t produce candidate

itemsets and building FP-tree only for pruned database

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

529

that fit into main memory easily. Thus it saves much

time and space and considered as an efficient method as

proved from the results.

V. REFERENCES

[1] A. Savasere, E. Omiecinski, and S. Navathe. "An

efficient algorithm for mining association rules in

large databases". In Proc. Int'l Conf. Very Large

Data Bases (VLDB), Sept. 1995, pages 432–443.

[2] Aggrawal.R, Imielinski.t, Swami.A. "Mining

Association Rules between Sets of Items in Large

Databases". In Proc. Int'l Conf. of the 1993 ACM

SIGMOD Conference Washington DC, USA.

[3] Agrawal.R and Srikant.R. "Fast algorithms for

mining association rules". In Proc.Int'l Conf. Very

Large Data Bases (VLDB), Sept. 1994, pages

487–499.

[4] Brin.S, Motwani. R, Ullman. J.D, and S. Tsur.

"Dynamic itemset counting and implication rules

for market basket analysis". In Proc. ACM-

SIGMOD Int'l Conf. Management of Data

(SIGMOD), May 1997, pages 255–264.

[5] C. Borgelt. "An Implementation of the FP-growth

Algorithm". Proc. Workshop Open Software for

Data Mining, 1–5.ACMPress, New York, NY,

USA 2005.

[6] Han.J, Pei.J, and Yin. Y. "Mining frequent

patterns without candidate generation". In Proc.

ACM-SIGMOD Int'l Conf. Management of Data

(SIGMOD), 2000

[7] Park. J. S, M.S. Chen, P.S. Yu. "An effective

hash-based algorithm for mining association

rules". In Proc. ACM-SIGMOD Int'l Conf.

Management of Data (SIGMOD), San Jose, CA,

May 1995, pages 175–186.

[8] Pei.J, Han.J, Lu.H, Nishio.S. Tang. S. and Yang.

D. "H-mine: Hyper-structure mining of frequent

patterns in large databases". In Proc. Int'l Conf.

Data Mining (ICDM), November 2001.

[9] C.Borgelt. "Efficient Implementations of Apriori

and Eclat". In Proc. 1st IEEE ICDM Workshop on

Frequent Item Set Mining Implementations,

CEUR Workshop Proceedings 90, Aachen,

Germany 2003.

[10] Toivonen.H. "Sampling large databases for

association rules". In Proc. Int'l Conf. Very Large

Data Bases (VLDB), Sept. 1996, Bombay, India,

pages 134–145.

[11] Nizar R.Mabrouken, C.I.Ezeife Taxonomy of

Sequential Patter Mining Algorithm". In Proc. in

ACM Computing Surveys, Vol 43, No 1, Article

3, November 2010.

[12] Yiwu Xie, Yutong Li, Chunli Wang, Mingyu Lu.

"The Optimization and Improvement of the

Apriori Algorithm". In Proc. Int'l Workshop on

Education Technology and Training &

International Workshop on Geoscience and

Remote Sensing 2008.

[13] "Data mining Concepts and Techniques" by By

Jiawei Han, Micheline Kamber, Morgan

Kaufmann Publishers, 2006.

[14] S.P Latha, DR. N.Ramaraj. "Algorithm for

Efficient Data Mining". In Proc. Int'l Conf. on

IEEE International Computational Intelligence

and Multimedia Applications, 2007, pp. 66-70.

[15] Dongme Sun, Shaohua Teng, Wei Zhang, Haibin

Zhu. "An Algorithm to Improve the Effectiveness

of Apriori". In Proc. Int'l Conf. on 6th IEEE Int.

Conf. on Cognitive Informatics (ICCI'07), 2007.

